Search

The Butterfly Effect

for the idea in all of us

Tag

Artificial Intelligence

Synthetic Neuruointerfaces: Abstract

Earlier this week, I published my working paper on simulating synthetic neurointerfaces. It’s been quite a journey getting here, and I apologize for the delay in posting about the posting of my paper. I’m going to submit the paper to the 2017 International Conference for Learning Representations (ICLR). What I have posted is a working paper, meaning that there will be more drafts and revisions to come before January. If you have any questions please feel free to contact me. I would also like to give a disclaimer that my work purely comes from a mathematical, and a computer science background. This is a draft, and there are field experts that helped me with the computational neuroscience portion of this project. In the end, my goal was to make the brain itself, a formal system: and I have treated the brain as such throughout.

I’m very excited about this project not only because of its potential but because of what it’s already showed us. We are now able to get some basic neural representations of simple cognitive functions and modulate the functional anatomy of a synthetic neocortical column with ease, a step that we couldn’t achieve otherwise.

In this study, we explore the potential of an unbounded, self-organizing spatial network to simulate translational awareness lent by the brain’s neocortical hypercolumns as a means to better understand the nature of awareness and memory. We modularly examine the prefrontal cortical function, amygdalar responses, and cortical activation complexes to model a synthetic recall system capable of functioning as a compartmentalized and virtual equivalent of the human memory functions. The produced neurointerfaces are able to consistently reproduce the reductive learning quotients of humans in various learning complexities and increase generalizing potentials across all learned behaviors. The cognitive system is validated by examining its persistence under the induction of various mental illnesses and mapping the synthetic changes to their equivalent neuroanatomical mutations. The resultant set of neurointerfaces is a form of artificial general intelligence that produces wave forms empirically similar to that of a patient’s brain. The interfaces also allow us to pinpoint, geometrically and neuroanatomically, the source of any functional behavior.

The rest of the paper can be found here: https://www.researchgate.net/publication/308421342_Synthetic_Neurointerfaces_Simulating_Neural_Hypercolumns_in_Unbounded_Spatial_Networks

 

 

Advertisements

Fluid Intelligence: Introduction

 

Fluid intelligence: the capacity to think logically and solve problems in novel situations, independent of acquired knowledge

Psychology has found the basis of fluid intelligence in the juxtaposition of layered memory and application as means to essentially “connect two fluid ideas with an an abstractly analogous property”. Such a mathematical design would have to be able to therefore derive temporal relationships with weighted bonds between two coherently disparate concepts through the means of similar properties. These properties within node types will have to be self-defined and self-propagated within idea types.

Why?

In a pursuit towards a truly dynamic artificial intelligence, it is necessary to establish a recurrent method to decipher the presence of concrete yet abstract entities (“ideas”) independent of a related and coherent topic set.
A considerable amount of work venturing into this field has culminated in the prevalence of statistical methods to extract probabilistic models dependent on large amounts of unstructured data. These Bayesian data analytic techniques often result in an understanding superficial in the context of a true relational understanding. Furthermore, this “bag-of-words” approach when looking at amounts of unstructured data (quantifiable by correct relationships derived between the idea nodes) often relate to a single dimensional understanding of the topics at hand. Traditionally, when these topics are transformed, it is difficult to extract hierarchy and queryable relations using matrix transformations from a derived data set.

The project that I will be describing in the subsequent posts is an effort to change the approach from which dynamic fluid intelligence is derived, finding a backbone in streaming big data. Ideally, this model would be able to take a layered, multi-dimensional approach to autonomous identification of properties of dynamically changing ideas from portions of said data set. It would also be able to find types of relationships, ultimately deriving a set of previously undefined relational schemas through unsupervised machine learning techniques that would ultimately allow for a queryable graph with properties and nodes initially undefined.

GA Utilizing Efficient Operators in TSP

Through the data collected in the above two pages, it can be reasonably be concluded that center inverse mutation in unison with the inversely linear roulette wheel selection and the random crossover point yield the best result with a higher number of generations. We decided to test a combination of all of these genetic operators and see the value of the lowest path yielded by it. The same input graph used for the other tests was used in this case with 6000 chromosomes in the initial population and 5000 generations with a cutoff percentage of 30%

The results are as follows of the top path after 5000 generations:
Weight = 238
Path: {A, X, C, P, S, G, E, U, Q, Y, B, V, N, T, W, I, F, H, Z, O, D, R, M, L, K, J, A}

Graph (with all edges and weights present):Graph

In the Comparison of Genetic Operators For Solving the Traveling Salesman Problem: Mutation

In attempt to statistically compare the operators, the input graph and the initial population was kept the same for each trial. The numbers displayed below are the average of 10 trials conducted with the same input graph but a different initial population. The algorithm was ran with an input graph consisting of 26 static nodes and approximately 4.03E26 possible combinations. Each trial ran 5000 generations with an input population of 5000 chromosomes. The fitness percentage was 30% throughout every trial.

Mutation Operators and Crossover Point

In this trial the method of selection was kept standard using the percentage cutoff method to avoid any influence from the selection method.

Random Crossover Point Center Crossover Point
Reverse Sequence Mutation 336 414
Center Inverse Mutation 253 310

The representation of each mutation operator over iterations was tested with a constant center crossover point.

Mutation Operator Comparison

Genetic Algorithm: Selection

In every generation, a selection agent comes to play which sifts out the fit chromosomes from the unfit chromosomes. The selection agent “kills off” a user specified percentage of organisms in the population.However, it is under the discretion of the selection agent in determining which chromosomes to kill. As mentioned earlier, fitness is defined by having the lowest weight in the circumstances put forth by the TSP. However selection may not necessarily be only off of that. This can be seen when comparing the two most prevalent types of selection operators:
Continue reading “Genetic Algorithm: Selection”

Genetic Algorithm: Mutation

During the progression of a genetic algorithm, the population can hit a local optima (or extrema). Nature copes for this local optima by adding random genetic diversity to the population set “every-so-often” with the help of mutation. Our genetic algorithm accomplishes this via the mutation operator. Although there are a plethora of mutation types our GA focused on a select two:

1. Reverse Sequence Mutation – In the reverse sequence mutation operator, we take a random point in the sequence or organism. We split the path (P1) at the selected point. The second half of the split path (P1H2) is then inverted and appended to the end of the first half (P1H1) with the necessary corrections made to make sure the last node is the same as the start node to get a final mutated path (M1).

P1: {A, C, J | D, G, H, E, B, F, I, A}  ⇒ M1: {A, C, J, I, F, B, E, H, G, D, A}

2. Center Inverse Mutation – The chromosome (path or organism) is divided into two sections at the middle of the chromosome. Each of these sections are then inverted and added to a new path. The order of each of these halves remains constant, meaning the first inverted half remains the first half in the mutated path. The necessary corrections are made to amend the mutated path into a viable path so solve the TSP.

P1: {A, C, J, D, G, H, E | B, F, I, A}  ⇒ M1: {A, E, H, G, D, J, C, I, F, B, A}

Genetic Algorithms: Crossover

The method of crossover remains fairly constant regardless of the problem and scope. Crossover is achieved by first selecting a crossover point within a pair of defined and unique organisms P1 and P2 (which are the equivalent of parents for the crossed over parent). The chromosomes are then split at the selected crossover point. The second half of P2 (P2H2)  is then appended to the first half of P`1  (P1H1) to make one child chromosome (C1). The second child (C2) is made by appending the second half of P1 (P1H2) to the first half of P2 (P2H1). Continue reading “Genetic Algorithms: Crossover”

Genetic Algorithm Definitions for TSP

A genetic algorithm is a type of evolutionary algorithm and therefore TSP must be fit to fill all the constraints necessary to execute a genetic algorithm. An organism in the sense of TSP can be defined as a viable path that visits every node in the graph. Each path must start with a node, visit all the nodes present in the graph, and then return to the same node that it started with. An example of a viable path with an input graph of 10 vertices is shown below with each letter representing a node in the input graph:

{A, C, J, D, G, H, E, B, F, I, A}

The population in TSP can be defined as a set of unique paths. Fitness can be defined as the weight or distance of the path. Thus, a lower weight will result in higher fitness and vice versa. A sample population of two organisms is shown below. In front of each organism is its weight or for the cases of this exercise— its fitness:

set{ 143 : {A, C, J, D, G, H, E, B, F, I, A} , 210 : {A , B, J, D, C, E, I, F, H, G, A} }

Genetic Algorithms: Intro

In this exercise, we attempt to utilize genetic algorithms to find an optimal, but not perfect, solution to the traveling salesman problem. A genetic algorithm emulates nature in its optimization process. Nature uses several mechanisms which have led to the emergence of new species and still better adapted to their environments. The laws which react to species evolution have been known by the research of Charles Darwin in the last century: Genetic algorithms are powerful methods of optimization that utilize these rules defined by evolution in their process to find a pseudo-optimal answer. These algorithms were modeled on the evolution of species. The genetic algorithm utilizes the properties of genetics such as selection, crossover, mutation.

Create a website or blog at WordPress.com

Up ↑